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Figure 1  Field curve –pre-bored test in silty sand 

 

Determining the modulus of soils with the pressuremeter test 

Terms: 

 
 

GP Pressuremeter shear modulus 
GS Secant shear modulus 
GT Tangential shear modulus 
Gy Secant shear modulus at the maximum elastic shear strain 
GHH, GVH Shear moduli for transversely isotropic material 
EH, EV Young’s modulus in the horizontal and vertical direction 

HH, HV Poisson’s ratios for transversely isotropic material 

n Ratio of horizontal to vertical Young’s modulus EH/EV 

N Exponent (Whittle & Liu, 2013) 
KO Ratio of horizontal to vertical effective insitu stress 

 Shear stress 
pC Pressure measured at the cavity wall 

c Circumferential strain measured at the borehole wall 

 Shear strain 

c Shear strain measured at the borehole wall 

a Invariant shear strain (axial strain in a triaxial test) 

 Radial stress intercept 

 Elastic exponent 

 Shear stress intercept 

′av Mean effective stress 

ho    ′ho  Total and effective insitu lateral stress 

vo   ′vo Total and effective insitu vertical stress 

Background 

The interpretation of 
the pressuremeter 
test must take account 
of the disturbance 
caused by the method 
used to place the 
probe in the ground. 
The least disruptive of 
the methods is self 
boring where 
disturbance is usually 
small enough to not 
cause the material to 
fail and is therefore 
recoverable. The 

alternatives to self bored devices are pre-bored probes or pushed instruments such as the 
Cone Pressuremeter (CPM). In soils the disturbance caused by pre-boring is seldom 
recoverable and for pushing is never recoverable because during the push the material will 
have been taken to a limit condition. The material is likely to be in a complex stress state 
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Figure 2  Shear modulus degradation curves 

 

prior to the expansion phase of the test commencing. In seems therefore that using the 
loading curve as a source of stiffness data is questionable due to the unknowable 
contribution of disturbance effects.  

However for any insertion process it is possible to erase the previous stress history by 
extending the zone of failed material and putting every element of soil within the zone into 
a uniform plastic condition. At a remote radius from the pressuremeter there is a boundary 
where the material  is on the point of yielding.  If the direction of loading is reversed, the 
response seen at the pressuremeter will be that of the remote boundary being unloaded 
elastically, and eventually plastically if the process is taken far enough. In fig 1 the 
unload/reload cycles rely on this principle to allow the true elastic properties of the ground 
to be discovered. It is evident that although each cycle is taken at a different expansion the 
response is highly repeatable. This test was pre-bored, so the cavity was completely 
unloaded prior to the pressuremeter test commencing. The consequences of this are 
obvious when the slope of the initial loading is compared to the unload/reload cycles.  

The displacement changes within the cycles are small and do not cause the material to 
yield in extension. The third cycle in fig 1 is shown as an inset, and it can be seen that it has 
a hysteretic characteristic. This is due to the influence of strain level on the current  
modulus. Bolton & Whittle (1999) shows that for shear strains above 10-4 this non-linear 
response is adequately described by a power curve, permitting the  stiffness degradation 
curve to be defined (fig 2).  

In this material the 
shape of each cycle 
(the strain 
dependency)  is 
almost identical, but 
successive cycles 
plot a higher 
stiffness, because of 
changing stress 
level. If the material 
was low 
permeability clay 
giving an undrained 
loading then the 
mean effective 

stress ′av following 
yield is constant, 

and all cycles would plot the same stiffness/strain curve. In this material, silty sand, the 

loading is drained and ′av is increasing throughout, giving the response seen in fig 2. Part of 
the data reduction procedure is to adjust these trends to a reference stress level such as the 

effective insitu lateral stress, ′ho. This requires the ′av for each cycle to be calculated. 
Hence although in principle stiffness is obtainable from all pressuremeter tests, no matter 
how disturbed the insertion process, it remains necessary to determine additional 
engineering parameters in order fully to reconcile the stiffness data. 

Pressuremeter derived stiffness is also affected by cross anisotropy. The pressuremeter 
used conventionally gives shear modulus parameters of type GHH, where the first suffix 
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Fig 3  Expanded view of an unload/reload cycle 

 

shows the direction of loading and the second suffix the direction of particle movement. 
Many design calculations that require a value for shear modulus mean in practice the 
independent shear modulus GVH. Translating between pressuremeter values and alternative 
expressions for modulus is complex but worth pursuing because of the high quality and 
speed of the pressuremeter measure.  

Unloading and reloading are a feature of certain triaxial procedures and pile loading 
experiments. In the context of pressuremeters the first account of the theory behind the 
procedure is given by Hughes’82. Cycles are a prominent feature of the Wroth Rankine 
lecture (Wroth, ’84). Bellotti et al (’89) give a clear explanation and methodology for 
manipulating the stress dependency of tests in sand. A number of authors in the 1990’s, 
especially Muir Wood (1990) and Jardine (1992) explore the non-linear strain dependency 
characteristic of the cycles. Bolton & Whittle (’99) propose the simple procedure described 
below, using a power function to discover the non-linear strain components. Whittle (’99) 
shows how the power function approach relates to the solution of Palmer (‘72) for the 
current mobilised shear stress at any part of the undrained pressuremeter curve.  

This  methodology is extensively used in the United Kingdom, perhaps because of the 
greater use of high resolution pressuremeters with local measurement – it is almost 
impossible to make plausible unload/reload cycles with simpler equipment such as the 
Ménard pressuremeter, where the resolution of expansion change is too poor to see an 
elastic strain alteration. 

Linear elastic interpretation 

If the material was linear elastic then the slope of a line bisecting the apices of a cycle could 
be used to derive the shear modulus. Figure 3 shows a typical example of one such cycle.  

The equation used is: G = pc/2c Equ.[ 1] 

Implicit in this equation is the assumption that pc is equivalent to c, that is to say the 
material has linear 
elastic characteristics. 
Note that the cavity 
strain calculation uses 
the measured radial 
displacement at the 
centre of the cycle as 
a strain origin, so 
every cycle has a 
different origin. 

Ideally the loop 
should be conducted 
with as little 
interruption to the 
loading as possible 

but it is sometimes necessary to hold the pressure in the probe for a short time (maybe as 
little as a minute) prior to starting to unload. 
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Fig 4 Annotated unload/reload cycle 
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The pressuremeter test is a shearing process. The modulus measured is a function of shear 
modulus G and is independent of Poisson’s ratio, although this is not always obvious from 
the way in which modulus data are sometimes presented. 

The linear-elastic approach is likely to be valid only for tests in rock. 

Non-linear stiffness/strain response 

It is now widely acknowledged that below the strain necessary to cause the material to 
yield, the stiffness/strain relationship is not linear. The unload/reload cycle can be made to 
give a comprehensive description of this non-linear relationship by looking at smaller steps 
of pressure/strain other than the points at the extreme ends of the cycle.  

For reasons explained in 
Whittle et al (1992) it is 
preferable to examine one 
half of the rebound cycle 
only, that which follows the 
reversal of stress in a loop. 
The lowest recorded value of 
stress and strain then 
becomes the origin for 
subsequent data points until 
the original loading path is 
re-joined. 

In Fig 4, once a new origin is 
defined, every subsequent 
data point on the reloading 
part of the loop (A, B, C etc.) 

can be used to give a value for secant shear modulus. This value can then be plotted against 
the associated strain increment as measured from the new strain origin. 

It follows that it is not necessary to take cycles of small strain amplitude in order to obtain 
small strain stiffness parameters. Indeed it is better to make the cycles as large as possible 
(subject to the condition that the material is not allowed to fail in extension) in order to 
obtain parameters for as wide a strain range as possible.  

Using the local origin for each cycle the reloading data are plotted on log log axes of radial 
stress versus shear strain at the cavity wall, and the intercept and gradient of the best fit 
straight line is identified (fig 5).  The gradient expresses the non-linearity of the response, so 
1 would be linear elastic. In the example the gradient is 0.629.  

If the expansion is undrained then Bolton & Whittle (1999) show how the intercept and 
gradient allow the equivalent trend in shear stress: shear strain space to be derived. The 
quickest proof is obtained by using the raw trend as input for the Palmer (1972) solution for 
undrained cavity expansion. For a test in drained material the same solution can be used 
assuming that whilst the material is deforming elastically no volumetric strains result. 

In fig 5 the correspondence  to a straight line is excellent, and a correlation co-efficient 
better than 0.98 is typical. 
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From pressuremeter modulus to secant and tangential modulus 

As shown in fig 5  the variation of stiffness with strain seen in a pressuremeter rebound 
cycle can be expressed as a power law. While the soil is responding elastically, pressure 
measured at the borehole wall is given by  

 pc =  Equ.[2] 

noting that  is plane shear strain, approximately twice the cavity strain.  

For clays, Palmer (1972) shows that the current shear stress c is given by 

 c = dp/d[ln()] Equ.[3] 

Substituting for dp using the right hand side of [2] allows the differential equation to be 
solved giving 

 c =  Equ.[4] 

 is the shear stress constant and is usually called , a term defined by the Bolton & 
Whittle analysis. Shear modulus is shear stress divided by shear strain so secant shear 
modulus Gs is given by : 

 Gs = c
-1 Equ.[5] 

This gives a means of determining the secant shear modulus at any elastic shear strain, 
although an arbitrary cut-off strain must be assumed below which the modulus will be 
constant and a maximum – this strain is below the resolution of the current generation of 

 
Fig 5 The non linear elastic response 
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pressuremeters. It is our practice to quote between 10-4 and 10-2 plane shear strain (0.01% 
to 1%). 

Note: When comparing triaxial results with 

pressuremeter results, invariant shear strain a is  
a = c /3  

 
Tangential shear modulus Gt is given by 
(Muir Wood, 1990) 

Gt = Gs + c[dGs/dc] Equ.[7] 

Hence from the power law Gt = c
-1 Equ.[8] 

For the purpose of finding the single value of secant shear stiffness governing the 
pressuremeter response seen in the measured loading curve, Gy is required. This is the 
secant modulus at the maximum elastic shear strain. It is too conservative a value for design 
purposes.  

Stress level 

For modulus parameters derived from undrained expansion tests the mean effective stress 
remains unchanged throughout the expansion and all stiffness:strain data will plot the same 
trend. Conversely, failure to plot the same trend implies changes in the mean effective 
stress (fig 2).  

Whittle & Liu (2013) give a method for both stress and strain adjustment. It is  based on 
Bellotti et al (1989) and can be applied to  tests that contain at least four unload/reload 
cycles. 

Their solution can be written as: G = AN Equ.[9] 

A and N are both semi-log equations. For most purposes this level of complexity is not 
required and a simpler approach can be adopted.  

1) Start by carrying out the non-linear analysis described above and discover  and . Use 
these to find, for each cycle, Gs at an intermediate value of shear strain, such as 0.1%. 

2) Calculate the mean effective stress ´av at the commencement of each loop. The 
effective radial stress p´ is measured by the pressuremeter and the calculation is 

 ´av = p´/(1+sin ɸ) Equ.[10] 

where ɸ is the peak angle of internal friction  

3) Plot modulus against effective stress (fig 6). 

The example in fig 6 shows two tests in sand treated in this way. Each test gives a set of 
points that follow a power law trend. The exponent of the power law is describing the stress 
dependency at this level of shear strain. At this strain, typical values for the exponent are in 
the range 0.3 to 0.4. The correlation coefficient for each trend is better than 0.99.  
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Fig 7 – Raw secant shear modulus 

 

Fig 8 – Adjusted secant shear modulus 

 

Given the stress dependency exponent n, , for each cycle a stress adjusted version of  is 

found, *:  

  = (′ref/´av)
n Equ.[11] 

[11] is based on the relationship suggested by Janbu (’63) and forms the basis of the 

Fig 6  Finding the stress dependency exponent 
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approach to stress dependency used in Bellotti et al (1989). The reference stress is typically 

′vo or ′ho. For applications where a vertical deformation modulus is required it seems 

sensible to use ′vo. * is used in place of  in [5] to derive the stress adjusted modulus. 

Figs 7 and 8 give a ‘before’ and ‘after’ example of the method being applied.  

Cross hole anisotropy 

The pressuremeter test gives values for GHH, the shearing stiffness in the horizontal plane. 
This is directly applicable to the analysis of radial consolidation or cylindrical cavity 
expansion due to pile insertion. GVH is applicable all shearing which has an element of 
deformation in the vertical plane, such as under a footing or round an axially loaded pile. 

To convert from GHH to GVH some relationship between the two must be assumed. Wroth et 
al (1979) suggest that anisotropy arises from two causes: 

 Structural anisotropy due to the deposition of soil on well defined planes  

 Stress induced anisotropy, due to the differences in normal stress acting in different 
directions. 

The second cause implies the stiffness in any direction will be a function of the effective 
insitu stress in that direction, ie a function of KO. 

It can be shown GHH = EH/[2(1+HH)] Equ.[12] 

For undrained expansion HH  = 1-m/2 Equ.[13] 

and m = EH/EV = KO Equ.[14] 

From this it follows EH = (4-m)GHH Equ.[15] 

and EV = (4-m)GHH/m Equ.[16] 

This is as far as argument from first principles can go, because of the additional contribution 
of the manner in which the material is deposited.  KO is likely to lie between 0.5 and 2, so 
from [14] EH/GHH lies between 2 and 3.5. From [16] EV/GHH lies between 1 and 1.75. 

It is likely that GVH will be linked to EV by Poisson’s ratio in a relationship of the form of [16]. 
Plausible values of EV/GVH would seem to be 2.4 to 3. Hence in a material with KO of 2, GVH 
could be as low as GHH/3. Simpson et al (1996) come to the same conclusion, but find in 

practice heavily over-consolidated London clay gives relationships of the order of GVH  
0.65GHH. The influence of the strain range is not separately considered in these studies. 

Lee & Rowe (1989) give details of the anisotropy characteristics of many clays varying from 
lightly overconsolidated to heavily overconsolidated. The general conclusion is EV/GVH lies 
between 4 and 5, rather more than the isotropic relationship of 3. However their paper was 
concerned with the impact of anisotropic stiffness properties on surface settlement. 
Deriving GVH from EV is therefore unsatisfactory, because although GVH is insensitive to the 
direction of loading, EV is not.  

Shear modulus from other parts of the pressuremeter curve. 

The initial part of the loading will give a value for secant shear modulus, usually referred to 
as Gi. Provided the insertion disturbance is low this will be a plausible value but affected by 
the same considerations of stress level and strain range as other parts of the curve. 
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The first part of the unloading can in principle give a similar parameter but by the time the 
pressuremeter unloads the creep strains due to consolidation and rate effects will be large, 
so there will be a tendency for the initial unloading to be too stiff. However provided some 
allowance is made for this then reasonable estimates of the shear modulus will be obtained.  

Curve fitting analyses imply a value for the secant shear modulus at yield. Although this is 
not likely to be the best way of deriving shear modulus data it is important justification for 
using such analyses that they can predict this independently measurable stiffness.  

Young’s Modulus 

All modulus parameters derived from the pressuremeter test are shear modulus GHH. They 
can be converted to Young’s modulus EHH using [12], above.  

A non-linear version of [12] is E = 2(1+ v)(√3a)
-1 Equ.[17] 

This incorporates the power law parameters. a is invariant or axial shear strain, so 
multiplying it by √3 (see the note above) has the effect of converting it to plane shear strain. 

This allows  and  parameters obtained in shear stress/plane shear strain space to be 
applied.  

Non-linear modulus in terms of shear stress 

For some applications it is convenient to derive stiffness values as a proportion of the 
mobilized strength. If the shear strength cu is known, and x represents the proportion of 

strength used, then the shear strain x for this proportion is given as follows:  

Where 0 < x ≤ 1 x = [xcu/](1/) Equ. [18] 

For example it is common to require G50, the shear modulus when half of the available 
strength is mobilised. It is straightforward to apply the preceding non-linear stiffness 
expressions to derive the relevant modulus:  

Generally, shear modulus at strength fraction z: Gz= [zcu
 Equ. [19] 

Specifically, for G50: G50= [cu
 Equ. [20] 

Possible method for estimating Gmax and the threshold elastic shear strain 

Oztoprak and Bolton (2013) present  a methodology for deriving stiffness/strain curves from 
a limited set of information for a particular material. One of the relationships they find 
useful is that due to Fahey & Carter (1993) where the ratio G/Gmax is connected to a 
hyperbolic function using fractions of the shear stress to failure, as follows: 

 G/Gmax= 1- f(/f
g Equ. [21] 

The f and g terms allow the curvature of the basic hyperbolic function to be manipulated. f 
will take a value close to but not greater than 1, say 0.9. g has more effect on the curvature 

and reported values applied to real soils lie in the range 0.25 to 0.35.The ratio /f is 
analogous to z used in [19] so it is possible to write the following: 

 Gmax= Gz /[1- f(zg] Equ. [22] 

 

Figure 9 is the result of applying [22] to a single cycle in London Clay. If the formulation of 
[21] was correct then all proportions of stress would give the same answer. Clearly they do 
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not but the major discrepancies occur at the limits of the trend. Within the proportion range 
0.1 to 0.6 there is reasonable agreement. Presumably the errors are due to the mismatch 
between a hyperbolic decay curve being mapped onto a power law trend. 

Published uses of [21] seem to be referred to tests in sand. There is no reason in principle 
why this approach should not be applied to a fine grained material. In fig 9,  f has been 

chosen to give an equal error at the extremes of the stress ratio /ult and in this example 

ult is the undrained shear strength cu. It seems reasonable to expect non-linearity to be 
greater in clays than sands, and so 0.2 has been used for g. Common sense suggests that 
Gmax will start to decay at strains somewhere in the range 10-5 to 10-4 and this allows 
unrealistic values of g to be identified. A g of 0.35, for example, would make the threshold 
elastic shear strain 10-4.  
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