
95mm High-Pressure Dilatometer (HPD) Method Statement

Testing from a Heave Compensated DP Vessel via rods

Revision Date: 24/08/2022

Table of Contents

1.0 EQUIPMENT		2
2.0 DRILLING REQUIREMENTS		2
3.0 MOBILISATION OF HPD		3
4.0 METHODOLOGY FOR OPERATING HIGH-PRESSUR	E DILATOMETER (HPD)	4
5.0 POST PROCESSING		7
6.0 METHODOLOGY FOR OPERATING AIR COMPRESS	OR AND AIR CYLINDER	9
6.1 EQUIPMENT		9
6.1.1 Storage of Compressor and Air Cylinders		9
6.2 CHARGING OPERATION		9
6.2.1 Preparation/Pre-operation Checks (Air Con	npressor)	9
6.2.2 Setup of Air Compressor		9
6.2.3 Preparation/Pre-operation Checks (Air Cyli	nders)	9
6.2.4 Charging		10
6.3 Post-Charging		10
6.3.1 Disconnecting Air Cylinder		10
6.4 REPLACING AIR CYLINDERS		10
6.4.1 Disconnecting Air Cylinder		10
6.4.2 Connecting a New Air Cylinder		11

1.0 Equipment

A Cambridge Insitu (CI) manufactured High-Pressure Dilatometer (HPD) with 100m umbilical, electronic interface unit and high-pressure control panel (HPCP).

Bought/not-bespoke equipment is also provided including BW rod, 2 x 12l air cylinder, 12 Volt vehicle battery, pneumatic hose and site laptop.

1.1 System Diagram

All units are millimetres. Overall length is indicative only as it depends on final sub arrangement.

Please see the HPD specification sheet for further instrument specific details at www.cambridge-insitu.com

Figure 1.0. CAD render of an 95mm HPD SHORT configured without subs.

2.0 Drilling Requirements

- 1. The HPD is normally placed in a pocket between 98 and 101mm diameter drilled at the foot of a larger borehole which must be cased as necessary to ensure borehole stability. In competent material where there is no risk of material falling in from the borehole wall, a continuous borehole of continuous diameter can be considered, but must be discussed as soon as possible after the award of the contract.
- 2. The pockets will be produced by the main contractor and should be between 2.0 and 3.0 metres in length. Cuttings of some materials can accumulate at the foot of a pocket, and if displaced by the insertion of the instrument may spoil the test; a 3.0 metre pocket is normally preferred to avoid this problem.
- 3. The correct core barrel is to be supplied by the main contractor, the most commonly used core barrel types are T6101, T6H or HWF. The minimum casing size for the 95 HPD is P size. H size casing cannot be used with the 95HPD as the instrument will not fit through a casing of this size.
- 4. The instrument must be lowered on the rods used by the rotary rig. The sub necessary to adapt these rods to our instrument will be supplied by Cambridge Insitu Ltd. Our 95HPDs have a BW pin thread at the top and we have subs to NWY, to HWY and to 2¾" API Regular. Other threads will require the use of an appropriate sub which may have to be specially made. We must be consulted about this as soon as possible after the award of contract.
- 5. It is very desirable that we discuss the working procedure with the actual drilling sub-contractor before the contract starts and arrangements should be made for us to do this as soon as possible after the award of the contract.

3.0 Mobilisation of HPD

- 1. Prior to the project, the pressuremeter is calibrated. This includes transducer calibrations for each individual arm as well as pressure cell. Further to this, the pressuremeters' system stiffness is measured to account for any deformation of the probes body itself under pressure. Finally, the individual membrane fitted to the probe is calibrated, allowing for a correction to made in the live test. In the event of a membrane being replaced, the new membrane is also calibrated. All calibrations can be completed whilst on site if necessary. The Instruments' pre-project calibrations and any other calibrations undertaken will be included in the report.
- 2. The pressuremeter and the associated equipment shall be shipped to the vessel in a specified port ready for embarkation. The operator will join the vessel before testing is due to take place and ready the equipment.
- 3. The HPD is to be assembled on-deck on the supplied A-frame, with electronic interface box, HPCP and operators site laptop set up in a sheltered, dry location with access to electrical power. Compressed air cylinders (charged to >15MPa) are also to be set up on deck, strapped upright to prevent toppling movement, but at a suitable distance to the operators HPCP as to allow for pneumatic hose length.
- 4. Following successful set up of the instrument on deck, pre-test zeroes are to be taken using the electronic interface and laptop (using supplied 'Winlog' software). These data readings denote the instruments recording values at atmospheric conditions and serve as a record of the instruments condition pre-test.

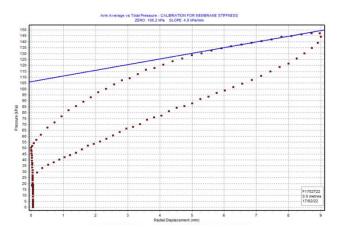


Figure 2.0. HPD membrane stiffness calibration, determining membrane slope.

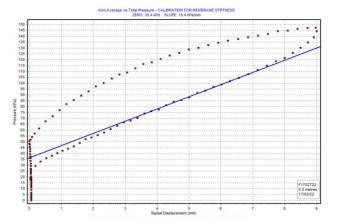


Figure 3.0. HPD membrane stiffness calibration, determining membrane zero.

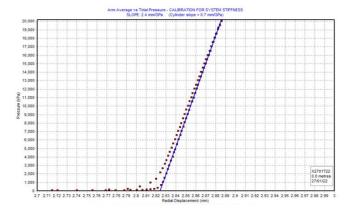


Figure 4.0. HPD system stiffness calibration, determining the entire systems deformation under stress.

4.0 Methodology for Operating High-Pressure Dilatometer (HPD)

The HPD is intended to be inserted into the ground for testing via a pre-made pocket, formed by a core barrel. The pressuremeter will then be lowered into the borehole via drill string.

- 1. Once a suitable pocket has been drilled, the HPD is then lowered down the borehole on drilling rods.
- 2. The HPD has an umbilical hose/cable which should be taped to the drill string at regular intervals (approx. every 6m). The instrument must be lowered to an adequate depth within the respective pre-formed pocket as for the entire expanding section to sit in a homogenous material. This can be decided via core samples or CPT data and is for the discretion of the pressuremeter engineer.
- 3. Once the HPD is successfully located in the pocket, a cavity expansion test is carried out, taking approximately 60 90 minutes for a typical test. Upon completion of the test, the HPD can be retrieved from the drill string and the borehole advanced to above the next test location.
- 4. The immediate results from the test are presented as a graphical plot (presented in 'Winlog' software) of pressure (kPa) versus radial displacement (mm). These are direct measurements produced by the pressuremeter, accurate to 1x10⁻³mm and 1kpa. Therefore, these graphs illustrate the data collected presented without any post processing, save the corrections made by calibrations. Following the completion of pressuremeter testing on the project, the graphs and the data they contain are analysed to produce the post-processed final results and engineering values. These are included in a factual report deliverable.

4.1 Testing Procedure Overview

The steps involved in the testing procedure as outlined below can be seen graphically explained in the figures 5.0, 6.0, 7.0, 8.0 and 9.0 below. (Note: these graphs are examples of this kind of test only).

To carry out a test the main contractor will use a core barrel with OD between 98-101mm to produce a pocket of between 2 and 3 metres in length before the HPD is lowered into the pocket. A cavity expansion test is then carried out.

- 1. The cavity expansion test should be stress controlled with pressure and displacement readings being recorded every ten seconds.
- 2. Unload/reload cycles should be taken once the level of stress has been raised high enough to overcome the total vertical stress.
- 3. In a test in a competent material such as a weak rock, pressure holds known as 'creep holds' should be taken at specific pressure increments during the test at the discretion of the operator.
- 4. At least three unload/reload cycles should be taken at different levels of strain to provide the best possible data for shear modulus.
- 5. Unload/reload cycles may be taken during the loading and unloading phases of the test, at the discretion of the operator.
- 6. The pressure should be held briefly before each unload/reload cycle to ensure that material creep is at a minimum.
- 7. During each unload/reload cycle the pressure should be decreased by approximately one third of the starting pressure of the cycle.
- 8. Each cycle should consist of approximately ten data points for the unloading and loading phases, a total of approximately 20 points. The stress level should remain above the total vertical stress throughout each cycle.

4.2 Notes on Methodology

A pressuremeter test is defined as having taken place and being, therefore, chargeable when the pressuremeter has reached the correct depth with all transducers working and pressure has been applied to it. The greatest care will be taken in designing and conducting the test to gather the maximum possible quantity of useful data. However, a pressuremeter expansion must be carried to sufficient radial strains to over-ride the disturbed area caused by the passage of either the cone or core barrel. If the ground conditions are such that the instrument membrane bursts prematurely the test fee remains payable.

The effects of ambient swell and current conditions on a test are of interest when testing offshore. The below figures 5.0 and 6.0 depict two tests conducted during significant wave action. The effects are manifested as "noise" amongst the data during the part of the test subjected to the swell conditions. In these cases, whilst reliability in the data is reduced, the results were still publishable, and could be correlated with other pressuremeter tests nearby. Furthermore, the presence of redundancy in the data (such as multiple unload-reload cycles) allows for confidence owing to repeatability.

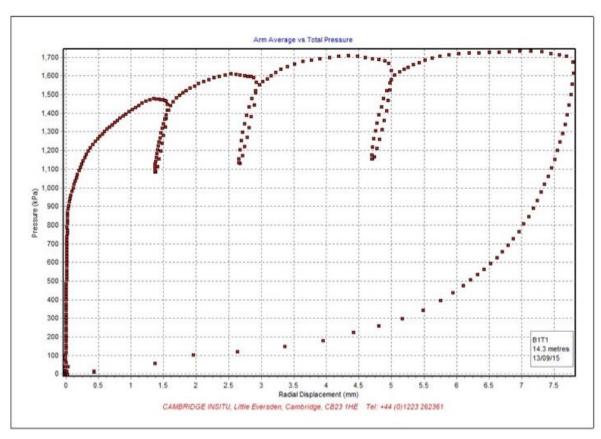


Figure 5.0. Wave action effecting initial loading portion of the test only.

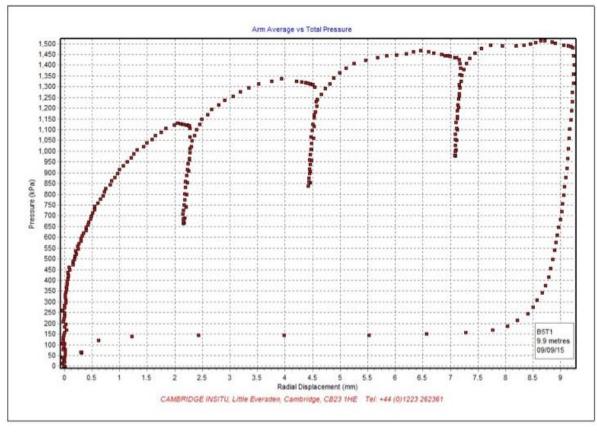


Figure 6.0. An example of the worst-case effects of wave action and ambient swell conditions.

5.0 Post processing

Pressure hold before 1st

Following completion of a successful test, the results on the graph displayed in figures 7.0, 8.0 and 9.0 are processed using the 'Winsitu' software (Cambridge Insitu Limited in-house analytical software). Note: these graphs are examples only, the reported analysis techniques depend on the test type and quality.

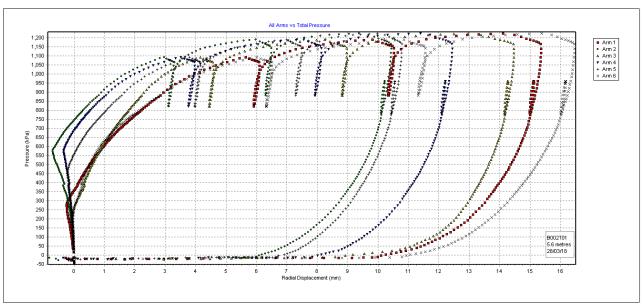


Figure 7.0. Data points as seen on software 'Winlog' during live testing. This plot illustrates the displacement data from all six individual arms (x) versus the total pressure in the probe (y).

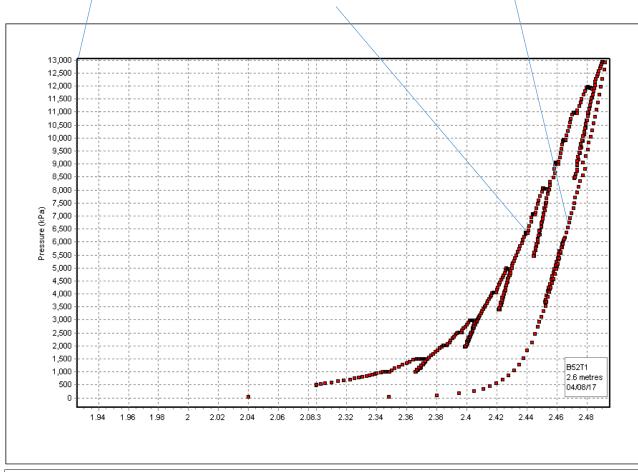
Unload/reload cycle (2nd of 3

unload/reload cycle to ensure creep is kept to a minimum.

test).

test).

the test. The pressure is gradually reduced until reaching its initial stress-state.


Figure 8.0. Data points as seen on software 'Winlog' during live testing. This plot illustrates the displacement data from the average of the six arms (x) against the total pressure in the probe (y).

The unloading component of

Example of a HPD test in a weak rock. It can be observed the pressure (y axis) is far greater with far smaller displacement (x axis) than in figures 3.0 and 4.0.

Example of a HPD test in a weak rock. Creep holds every 1MPa can be seen on the loading part of the curve. These occur as well as the unload/reload cycles.

Example of a HPD test in a weak rock. Unloading part of the test appears almost perfectly linear.

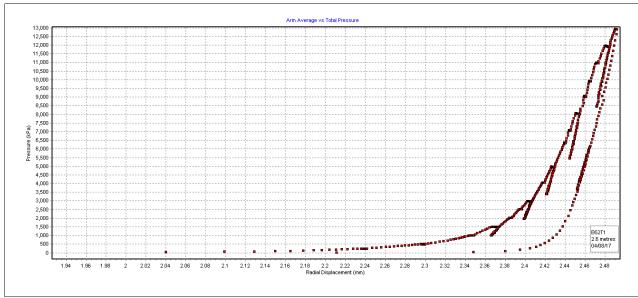


Figure 9.0. *Top:* blown up/zoomed in test data points and axis. *Bottom:* The original image of the test in a weak rock. Note the relatively small radial displacement and large total pressure.

The pressuremeter loading curve can be solved directly using mathematical expressions for the expansion of a cylindrical cavity. The solution conventionally is quoted in terms of stiffness and strength parameters for the material, specifically shear modulus, shear strength or friction angle as appropriate, and the insitu lateral

stress. A number of simplifying assumptions are made about the nature of the test and the ground. For example it is assumed that the material is fully saturated, homogenous, isotropic and behaving as a continuum that fails in shear only and that the length of the pressuremeter is great enough for the test to be modelled as a plane strain expansion.

6.0 Methodology for Operating Air Compressor and Air Cylinder

It is often necessary whilst undertaking Pressuremeter testing to charge/recharge the 12l air cylinder used to supply the compressed air to the probe during testing.

6.1 Equipment

Electric compressor Unit (44kg, Max Pressure 33MPa, 230V/50Hz – power requirements may vary depending on project). 2 x 12l air cylinders (17kg, Max Pressure 30MPa).

Note: Always follow manufacturers instruction manual when operating compressor.

6.1.1 Storage of Compressor and Air Cylinders

Both the air cylinders and compressor must be stored in a cool, dry place. Air cylinders must also be stored, strapped securely into place with a ratchet-strap standing up.

6.2 Charging Operation

- 6.2.1 Preparation/Pre-operation Checks (Air Compressor)
- 1. Check compressor for valid PAT test certificate and conduct visual check for damage of wires/cables, pneumatic hoses, plugs, valves, gauges, compressor housing and plastic casing.
- 2. Check compressor dipstick for sufficient oil level. Top up if required.
- 3. Check all valves on compressor are shut off completely.
- 4. Locate suitable location for charge, ensure position is protected from any rainfall or surface water and has a safe/reliable source of electrical power, as well as being away from people eg. away from main gangway/walkway/rest areas (Ask site manager for assistance if necessary).

6.2.2 Setup of Air Compressor

- 5. Position compressor in chosen location. This should be a two-person lift (compressor weighs 44kg, see Risk Assessment).
- 6. Connect compressor to Electrical power supply.
- 7. Ensure physical check that electrical plug connections are sound.

6.2.3 Preparation/Pre-operation Checks (Air Cylinders)

8. Check air cylinder's valve is shut off completely.

- 9. Check air cylinder has valid in-date inspection certificate and conduct visual check for corrosion/damage to cylinder, valve and rubber protective mesh/base.
- 10. Position air cylinder in reach of compressor pneumatic hose. Cylinder position must be strapped securely into place with a ratchet-strap standing up.

6.2.4 Charging

11. Connect compressor's pneumatic hose to air cylinder. Conduct physical check (twisting and pulling motion on pneumatic hose to ensure connection is secure.

At this point the air cylinder is now ready to be charged following the manufacturer's instructions.

12. During charging regularly inspect pressure gauge to ensure max pressure of cylinder is not exceeded.

NOTE: The air cylinders have a max pressure of 30MPa.

6.3 Post-Charging

Once the air cylinder is at the desired pressure as measured by the pressure gauge on the pneumatic hose, the operator needs to safely disconnect the cylinder from the compressor.

6.3.1 Disconnecting Air Cylinder

- 1. Shut cylinder valve off.
- 2. Open bleed valve on pneumatic hose (this will bleed the air pressure from the gauge-cylinder section of the hose, thus allowing the hose to be safely unscrewed/disconnected from the air cylinder).
- 3. Unscrew hose from cylinder.

6.4 Replacing Air Cylinders

When the pressure in a cylinder drops below a usable amount, the air cylinder must be replaced. This does not make the cylinder 'empty', and in some cases, there may still be up to 10MPa air pressure in the cylinder. This replacement process requires residual pressure to be bled from the system for it to be safe, and can be completed either mid-test or after/before a test.

6.4.1 Disconnecting Air Cylinder

- 1. Shut off HPCP valve, thus preventing air flow and pressure from the regulator to the HPCP output/probe. This will maintain the pressure in the probe, but obviously makes it impossible to increase the pressure.
- 2. The air cylinder valve can now be shut off completely, further isolating the system. This now only leaves the pneumatic hose (between HPCP and air cylinder) and the regulator section of the HPCP being left to bleed to be able to make a safe disconnection.
- 3. Both the pneumatic hose and the HPCP have bleed valves that can be used to bleed the system. Typically, the HPCP input bleed valve is the preferred option. Open this valve and the pressure in the hose and the regulator section of the HPCP will equalize to atmospheric pressure.

4. The hose can now be unscrewed from the air cylinder. The inadequately filled cylinder can now be refilled (see section 1.0 Methodology for Operating Air Compressor and Air Cylinder).

6.4.2 Connecting a New Air Cylinder

- 5. Take a full air cylinder and once strapped and secured upright screw the pneumatic hose into the cylinder valve. Ensure all the bleed valves are shut and hose connection is sound.
- 6. Open cylinder valve, slowly at first to ensure that the air pressure transferring from the bottle to the hose does not escape through a leak caused by an inadequate connection or similar fault. Once the system is secure, open the valve fully. This fully pressurizes the regulator section of the HPCP and the gauge pressure (on the HPCP) should reflect what quantity of pressure is now available to the system.
- 7. Open the HPCP valve, allowing air flow and pressure to transfer from the regulator to the probe. Continue testing as normal.