High-Pressure Dilatometer (HPD)

Specification and technical data sheet.

The High-Pressure Dilatometer (HPD) is a large diameter pressuremeter at Ø95mm OD. This probe has 20MPa maximum working pressure and as such can be used in materials ranging from rock, such as mudstone or chalk, to very weak clays.

The 95mm HPD is a pre-bored pressuremeter, so can only be inserted into 'pockets' of between 1.5 – 3.0m length, and nominally of between 98 – 101mm Diameter. A common choice for pre-boring (creating a 'pocket' for the instrument) is by utilising a 3m T6101 core barrel.

High Pressure Dilatometer (HPD)		
Probe Diameter (Field Ready):	98mm	
Max Working Pressure	20MPa	
Max Arm Radial	20mm	
Displacement:		
Maximum Strain:	42.1%	
No. of Direct Strain Arms:	6	
Arm Spacing at	60°	
Circumference:		
No. of Total Pressure Cells:	2	
No. of Pore Pressure Cells:	0	
Length of expanding section:	725mm	
Assembled Length (No Subs):	1520mm	
Umbilical Diameter:	14mm	
Actuation:	Pneumatic/Hydraulic	
Power Requirements:	12V	
Pre-bored:	Yes	
Self-bored	No	
Pushed:	No	
Thread Type From Probe:	BW	

Example Data		Common Parameters	
All Arms vs Total Pressure	All Arms vs Total Pressure	Insitu Horizontal Stress	σ_{ho}
3,600 3,600 3,400	19,000	Yield Stress	P_f
3,000	15,000 14,000 13,000	Limit Pressure	P_{lm}
2,600 2,400 <u>2,200</u> <u>2,200</u>	12,000 @ 11,000 g 10,000	Undrained Shear Strength	C_u
1,600 1,400 1,200	9,000 8,000 7,000 6,000	Frictional Strength Properties	ϕ_{cv} , ϕ_{pk} ,
1,000 800 600 400	5,000 4,000 3,000 2000 20,9m	Initial Shear Modulus	G_i
0 0 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7 7 5 8 Radial Displacement (mm)	1,000 0 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 Radial Displacement (mm)	Shear Modulus	G_{ur}
HPD Test in Soil	HPD Test in Rock	Young's Modulus	E