## Reaming Pressuremeter (RPM)

## Specification and technical data sheet.



The Reaming Pressuremeter (RPM) is a versatile small diameter pressuremeter, used in materials ranging from weak rock such as weathered chalk, to very weak clays.

Insertion techniques for the RPM can be either by pushing with hydraulic rams, or pre-boring with an SPT split spoon, 50mm drag bit or a rotary core barrel. This instrument can be configured to take a 15cm<sup>2</sup> live cone (CPT), thus changing the instrument from a Reaming Pressuremeter to a Cone Pressuremeter. The CPT operates entirely separately to the pressuremeter.

| Reaming Pressuremeter (RPM)   |           |  |  |  |  |
|-------------------------------|-----------|--|--|--|--|
| Probe Diameter (Field Ready): | 47mm      |  |  |  |  |
| Max Working Pressure          | 10MPa     |  |  |  |  |
| Max Arm Radial Displacement:  | 10mm      |  |  |  |  |
| Maximum Strain:               | 42.5%     |  |  |  |  |
| No. of Direct Strain Arms:    | 3         |  |  |  |  |
| Arm Spacing at Circumference: | 120°      |  |  |  |  |
| No. of Total Pressure Cells:  | 1         |  |  |  |  |
| No. of Pore Pressure Cells:   | 0         |  |  |  |  |
| Length of expanding section:  | 285mm     |  |  |  |  |
| Assembled Length (No Subs):   | 945mm     |  |  |  |  |
| Umbilical Diameter:           | 12mm      |  |  |  |  |
| Actuation:                    | Pneumatic |  |  |  |  |
| Power Requirements:           | 12V       |  |  |  |  |
| Pre-bored:                    | Yes       |  |  |  |  |
| Self-bored                    | No        |  |  |  |  |
| Pushed:                       | Yes       |  |  |  |  |
| Thread Type From Probe:       | BW        |  |  |  |  |





| Example Data   |                                                                                         |       | Common Parameters              |                           |
|----------------|-----------------------------------------------------------------------------------------|-------|--------------------------------|---------------------------|
| 800 -          | All Arms vs Total Pressure                                                              | Arm 1 | Insitu Horizontal Stress       | $\sigma_{ho}$             |
| 750 -          |                                                                                         | 4     | Yield Stress                   | $P_f$                     |
| 700 -<br>650 - |                                                                                         |       | L'or't Brancour                |                           |
| 600 -          |                                                                                         |       | Limit Pressure                 | $P_{lm}$                  |
| 550 -          |                                                                                         |       | Undrained Shear Strength       | $C_u$                     |
| 350            |                                                                                         |       | Frictional Strength Properties | $\phi_{cv}$ , $\phi_{pk}$ |
| 300 -<br>250 - | ///11                                                                                   |       | Initial Shear Modulus          | $\frac{c}{G_i}$           |
| 200 -          |                                                                                         |       | Chara Marilalar                |                           |
| 100 -          |                                                                                         |       | Shear Modulus                  | $G_{ur}$                  |
| 50 -           | 3.0 metres                                                                              |       | Young's Modulus                | E                         |
|                | 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5<br>Radial Displacement (mm) |       |                                |                           |